

PRS-NEOWEB™ - CATEGORY A GEOCELLS (Cellular Confinement System) Specifications

Coefficient of Soil-Cell Friction Efficiency 0.95 ASTM D5321 Cell Wall Surface Texture Textured and perforated for internal friction efficiency Cell Wall Height 50, 75, 100, 120, 150, 200 mm (2, 3, 4, 4.7, 6, 8 in) Distance between Weld Seams 330, 356, 445, 660, 712 mm (13, 14, 17.5, 26, 28 in) Traceability Each section marked for full detailed traceability DIMENSIONAL STABILITY (±5%) VALUE UNITS TEST METHOD Cell Dimensional Stability by Coefficient of Thermal Expansion (CTE) ≤ 135 ppm/1°C ISO 11359-2 (TMA) ASTM E831 SEAM WELD PROPERTIES (±7%)	SYSTEM PHYSICAL PROPERTIES (±5%)						
Ccomposite alloy of polyester/polyamide nano-fibers dispersed in a polyethylene m Coefficient of Soil-Cell Friction Efficiency	PROPERTIES	DESCRIPTION					
Coefficient of Soil-Cell Friction Efficiency	Material						
Cell Wall Surface Texture		(Composite alloy of polyester/polyamide nano-fibers dispersed in a polyethylene matrix)					
Cell Wall Height So, 75, 100, 120, 150, 200 mm (2, 3, 4, 4.7, 6, 8 in)							
Distance between Weld Seams 330,356,445,660,712 mm (13, 14, 17.5, 26, 28 in)		,					
DIMENSIONAL STABILITY (±5%) DESCRIPTION VALUE UNITS TEST METHOD	Cell Wall Height						
DIMENSIONAL STABILITY (±5%) DESCRIPTION Cell Dimensional Stability by Coefficient of Thermal Expansion (CTE) SEAM WELD PROPERTIES (±7%) Seam Weld Strength — Weld Splitting 16 (minimum value) (minimum value) 180-13426-1 Part 1 Method C (1) ASTM D638, ISO-527 TENSILE PROPERTIES (±7%) Material Strength at Yield 20 MPa ASTM D638, ISO 527 Strength at Yield — non-perforated (Wide-width) (2) Strength at Yield — non-perforated (Wide-width) (2) Strength at Yield — non-perforated (2) (Wide-width) (2) Strength at Yield o display to the perforated (2) (Wide-width) (2) (2) Strength at Yield So distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rate 100 mm (3 lm) /min at 23° (73°+). Test of perforated tensile strength is conducted on the sample area with the densest perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation (UV and Oxidation Resistance) (3) Step 1 at 44°C (111°+) Step 2 at 51°C (124°+) Step 3 at 58°C (140°F) Step 4 at 65°C (140°F) Step 4 at 65°C (140°F) PPERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30°C (86°F) >725 MPa ISO 10319	Distance between Weld Seams	330, 356, 445, 660, 712 mm (13, 1	14, 17.5, 26, 28 in)				
DESCRIPTION VALUE UNITS TEST METHOD Cell Dimensional Stability by Coefficient of Thermal Expansion (CTE) \$ 135 ppm/1°C ISO 11359-2 (TMA) ASTM E831 SEAM WELD PROPERTIES (±7%) Seam Weld Strength - Weld Splitting (minimum value) 16 (minimum value) MPa ISO-13426-1 Part 1 Method C (1) (1) Adjusted to simulate optimum open cell size TENSILE PROPERTIES (±7%) Material Strength at Yield 20 MPa ISO 10319 (Wide-width) (2) Strength at Yield - non-perforated (Wide-width) (Wide-width) (2) (2) Strongth at Vield - perforated (Wide-width) (2) (2) Stondard ISO 10319 test modified to achieve more accurate results by using more representative test sample size; strip is cut adjucent to seams and clamped so distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rote 100 mm (3 in) /min at 23°C (73°F). Test of perforated tensile strength is conducted on the sample area with the densest perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation (UV and Oxidation Resistance) (3) (3) Effective design life at least 60 years LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation Step 1 at 44°C (111°F) Step 2 at 51°C (124°F) Step 2 at 51°C (124°F) Step 3 at 58°C (136°F) Step 4 at 65°C (149°F) Step 4 at 65°C (140°F) Step 4 at 65°C (140°F) Step 4 at 65°C (140°F) Step 5 at 51°C (160°F) Step 6 (50°C (140°F) Step 7 at 50°C (140°F) Step 8 at 51°C (160°F) Step 8 at 51°C (160°F) Step 9 at 51°C (160°F) Step 10°C (160°F) S	Traceability	Each section marked for full detaile	ed traceability				
DESCRIPTION VALUE UNITS TEST METHOD Cell Dimensional Stability by Coefficient of Thermal Expansion (CTE) \$ 135 ppm/1°C ISO 11359-2 (TMA) ASTM E831 SEAM WELD PROPERTIES (±7%) Seam Weld Strength - Weld Splitting (minimum value) 16 (minimum value) MPa ISO-13426-1 Part 1 Method C (1) (1) Adjusted to simulate optimum open cell size TENSILE PROPERTIES (±7%) Material Strength at Yield 20 MPa ISO 10319 (Wide-width) (2) Strength at Yield - non-perforated (Wide-width) (Wide-width) (2) (2) Strongth at Vield - perforated (Wide-width) (2) (2) Stondard ISO 10319 test modified to achieve more accurate results by using more representative test sample size; strip is cut adjucent to seams and clamped so distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rote 100 mm (3 in) /min at 23°C (73°F). Test of perforated tensile strength is conducted on the sample area with the densest perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation (UV and Oxidation Resistance) (3) (3) Effective design life at least 60 years LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation Step 1 at 44°C (111°F) Step 2 at 51°C (124°F) Step 2 at 51°C (124°F) Step 3 at 58°C (136°F) Step 4 at 65°C (149°F) Step 4 at 65°C (140°F) Step 4 at 65°C (140°F) Step 4 at 65°C (140°F) Step 5 at 51°C (160°F) Step 6 (50°C (140°F) Step 7 at 50°C (140°F) Step 8 at 51°C (160°F) Step 8 at 51°C (160°F) Step 9 at 51°C (160°F) Step 10°C (160°F) S							
Cell Dimensional Stability by Coefficient of Thermal Expansion (CTE) SEAM WELD PROPERTIES (±7%) Seam Weld Strength - Weld Splitting (1) Adjusted to simulate optimum open cell size TENSILE PROPERTIES (±7%) Material Strength at Yield 20 MPa ASTM D638, ISO 527 Strength at Yield - non-perforated (Wide-width) (2) Strength at Yield - perforated (Wide-width) 15 KN/m ISO 10319 (2) Strength at Yield - perforated (Wide-width) 15 KN/m ISO 10319 (2) Strength at Yield - perforated (1) Stondard ISO 10319 test modified to achieve more accurate results by using more representative test sample size; strip for out adjacent to seams and clamped so distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rate 100 mm (3 in) /min at 23°C (73°F). Test of perforated tensile strength is conducted on the sample area with the densest perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation (UV and Oxidation Resistance) (3) 2 ≠ 400 Minutes (HPOIT @ 150°C) Testing per GRI GM1 LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) Step 3 at 58°C (149°F) Step 4 at 65°C (149°F) Step 3 at 50°C (149°F) Step 3 at 50	DIMENSIONAL STABILITY (±5%						
SEAM WELD PROPERTIES (±7%) Seam Weld Strength - Weld Splitting 16 (minimum value) 16 kN/m 150-13426-1 Part 1 Method C (1) (1) Adjusted to simulate optimum open cell size TENSILE PROPERTIES (±7%) Material Strength at Yield 20 MPa ASTM D638, 150-527 Strength at Yield - non-perforated (Wide-width) 20 kN/m 150 10319 (Wide-width) (2) Strength at Yield - perforated 15 kN/m 150 10319 (Wide-width) (2) Strength at Yield - perforated 15 kN/m (2) Find the perforated 15 kN/m (2) Strength at Yield - perforated 15 kN/m (2) Find the perforated 15 kN/m (2) Strength at Yield - perforated 15 kN/m (2) Strength at Yield - perforated 15 kN/m (2) Strength at Yield - perforated 15 kN/m (2) Testing per and clamped so distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rate 100 mm (3 in) /min at 23*C (73*F). Test of perforated tensile strength is conducted on the sample area with the denset perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation ASTM D5885 (HPOIT © 150°C) Testing per GRI GM1 LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 447°C (111*F) ≤ 0.5 % (SIM) (SIM) (A) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at ample elevated temperature: +30°C (86°F)	DESCRIPTION	VALUE	UNITS	TEST METHOD			
SEAM WELD PROPERTIES (±7%) Seam Weld Strength - Weld Splitting 16 (minimum value) 16 kN/m 150-13426-1 Part 1 Method C (1) (1) Adjusted to simulate optimum open cell size TENSILE PROPERTIES (±7%) Material Strength at Yield 20 MPa ASTM D638, 150-527 Strength at Yield - non-perforated (Wide-width) 20 kN/m 150 10319 (Wide-width) (2) Strength at Yield - perforated 15 kN/m 150 10319 (Wide-width) (2) Strength at Yield - perforated 15 kN/m (2) Find the perforated 15 kN/m (2) Strength at Yield - perforated 15 kN/m (2) Find the perforated 15 kN/m (2) Strength at Yield - perforated 15 kN/m (2) Strength at Yield - perforated 15 kN/m (2) Strength at Yield - perforated 15 kN/m (2) Testing per and clamped so distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rate 100 mm (3 in) /min at 23*C (73*F). Test of perforated tensile strength is conducted on the sample area with the denset perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation ASTM D5885 (HPOIT © 150°C) Testing per GRI GM1 LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 447°C (111*F) ≤ 0.5 % (SIM) (SIM) (A) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at ample elevated temperature: +30°C (86°F)	Cell Dimensional Stability by						
SEAM WELD PROPERTIES (±7%) Seam Weld Strength – Weld Splitting (minimum value) (kN/m lso-13426-1 Part 1 Method C (1) (1) Adjusted to simulate optimum open cell size TENSILE PROPERTIES (±7%) Material Strength at Yield 20 MPa ASTM D638, ISO 527 Strength at Yield – non-perforated (Wide-width) 20 kN/m ISO 10319 (Wide-width) 15 kN/m ISO 10319 (Wide-width) 15 kN/m ISO 10319 (Wide-width) 15 kN/m ISO 10319 (2) Strength at Yield – perforated (Wide-width) 15 kN/m ISO 10319 (2) (2) (2) Standard ISO 10319 test modified to achieve more accurate results by using more representative test sample size; strip is cut adjacent to seams and clamped so distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rate 100 mm (3 in) /min at 23°C (73°F). Test of perforated tensile strength is conducted on the sample area with the densest perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation (UV and Oxidation Resistance) (3) ≥ 400 Minutes (HPOIT @ 150°C) Testing per GRI GM1 LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) ≤ 0.5 % (SIM) Step 2 at 51°C (124°F) ≤ 0.6 % (SIM) Step 3 at 58°C (136°F) ≤ 0.9 Deformation (4) ASTM D-6992 Step 4 at 65°C (149°F) ≤ 1.0 (4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30°C (86°F) > 725 MPa ISO 6721-1 ASTM E2254		≤ 135	ppm/1°C				
Seam Weld Strength - Weld Splitting				ASTIVI E831			
Seam Weld Strength - Weld Splitting (minimum value) kN/m Part 1 Method C (1)	SEAM WELD PROPERTIES (±7%						
(Infinitification value of the properties of the	Seam Wold Strength - Wold Splitting	16	kN/m				
TENSILE PROPERTIES (±7%) Material Strength at Yield		(minimum value)	KIN/III	Part 1 Method C (1)			
Material Strength at Yield 20 MPa ASTM D638, ISO 527 Strength at Yield − non-perforated (Wide-width) 20 kN/m ISO 10319 (2) Strength at Yield − perforated 15 kN/m ISO 10319 (2) Strength at Yield − perforated 15 kN/m ISO 10319 (2) (2) Strength at Yield − perforated (15 kN/m ISO 10319 (2) (2) Standard ISO 10319 test modified to achieve more accurate results by using more representative test sample size; strip is cut adjacent to seams and clamped so distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rate 100 mm (3 in) /min at 23 °C (73 °F). Test of perforated tensile strength is conducted on the sample area with the densest perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation (UV and Oxidation Resistance) (3) ≥ 400 Minutes ASTM D5885 (HPOIT @ 150 °C) Testing per GRI GM1 LONG-TERM PLASTIC DEFORMATION (±10 %) Measured Plastic Deformation by Accelerated Method Step 1 at 44 °C (111 °F) ≤ 0.5 % (SIM) Step 2 at 51 °C (124 °F) ≤ 0.6 % (SIM) Step 3 at 58 °C (136 °F) ≤ 0.9 Deformation (4) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30 °C (86 °F) + 725 MPa ISO 6721-1 ASTM E2254 + 45 °C (113 °F)	(1) Adjusted to simulate optimum open cell size						
Material Strength at Yield 20 MPa STM D638, ISO 527 Strength at Yield − non-perforated (Wide-width) 20 kN/m ISO 10319 (2) Strength at Yield − perforated 15 kN/m ISO 10319 (2) Strength at Yield − perforated 15 kN/m ISO 10319 (2) (2) Strength at Yield − perforated (2) tstendard ISO 10319 test modified to achieve more accurate results by using more representative test sample size; strip is cut adjacent to seams and clamped so distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rate 100 mm (3 in) /min at 23°C (73°F). Test of perforated tensile strength is conducted on the sample area with the densest perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation (UV and Oxidation Resistance) (3) ≥ 400 Minutes (HPOIT @ 150°C) Testing per GRI GM1 LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) ≤ 0.5 Step 2 at 51°C (124°F) ≤ 0.6 (SIM) Deformation (4) Step 3 at 58°C (136°F) ≤ 0.9 Deformation (4) Step 4 at 65°C (149°F) ≤ 1.0 PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30°C (86°F) → 725 MPa ISO 6721-1 ASTM E2254 +45°C (113°F) → 6625 A755	TENSILE PROPERTIES (±7%)						
Strength at Yield − non-perforated 20 kN/m ISO 10319 (2)				ASTM D638.			
(Wide-width) 15 kN/m (2)	Material Strength at Yield	20	MPa	, and the second			
(Wide-width) 15	Strength at Yield – non-perforated	20	1.81/	ISO 10319			
(Wide-width) (2) (2) Standard ISO 10319 test modified to achieve more accurate results by using more representative test sample size; strip is cut adjacent to seams and clamped so distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rate 100 mm (3 in) /min at 23°C (73°F). Test of perforated tensile strength is conducted on the sample area with the densest perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation (UV and Oxidation Resistance) (3) (3) Effective design life at least 60 years LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) Step 2 at 51°C (124°F) Step 3 at 58°C (136°F) Step 4 at 65°C (149°F) Step 4 at 65°C (149°F) Flexural Storage Modulus at sample elevated temperature: +30°C (86°F) +45°C (113°F) +60°C (140°F) ASTM D-692 ISO 6721-1 ASTM E2254		20	KN/m	(2)			
(2) Standard ISO 10319 test modified to achieve more accurate results by using more representative test sample size; strip is cut adjacent to seams and clamped so distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rate 100 mm (3 in) /min at 23°C (73°F). Test of perforated tensile strength is conducted on the sample area with the densest perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation (UV and Oxidation Resistance) (3) ≥ 400 Minutes (HPOIT @ 150°C) Testing per GRI GM1 LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) ≤ 0.5 Step 2 at 51°C (124°F) ≤ 0.6 % (SIM) Step 3 at 58°C (136°F) ≤ 0.9 Deformation (4) Step 4 at 65°C (149°F) ≤ 1.0 PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30°C (86°F) + 725 MPa ISO 6721-1 +45°C (113°F) ≤ 625 +66°C (140°F) + 7475 STEP 1 ASTM E2254	Strength at Yield – perforated	15	kN/m	ISO 10319			
seams and clamped so distance between clamps is 1/2 of cell height; test direction is perpendicular to seams. Test sample measured at rate 100 mm (3 in) /min at 23°C (73°F). Test of perforated tensile strength is conducted on the sample area with the densest perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation (UV and Oxidation Resistance) (3) (3) Effective design life at least 60 years LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) Step 2 at 51°C (124°F) Step 3 at 58°C (136°F) Step 4 at 65°C (149°F) Step 4 at 65°C (149°F) (4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30°C (86°F) +45°C (110°F) +65°C (110°F) +65°C (110°F) > 725 ASTM D-6992 (SIM) Deformation (4) ISO 6721-1 ASTM E2254	,		-	()			
rate 100 mm (3 in) /min at 23°C (73°F). Test of perforated tensile strength is conducted on the sample area with the densest perforation PHOTOCHEMICAL & OXIDATION DURABILITY Resistance to UV Degradation (UV and Oxidation Resistance) (3) ≥ 400 Minutes (HPOIT @ 150°C) (3) Effective design life at least 60 years Hongstree of the condition of the sample area with the densest perforation (HPOIT @ 150°C) Testing per GRI GM1 LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) ≤ 0.5 Step 2 at 51°C (124°F) ≤ 0.6 Step 3 at 58°C (136°F) ≤ 0.9 Step 4 at 65°C (149°F) ≤ 1.0 (4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30°C (86°F) > 725 H45°C (113°F) +45°C (113°F) > 625 H60°C (140°F) ASTM E2254							
Resistance to UV Degradation (UV and Oxidation Resistance) (3) (3) Effective design life at least 60 years LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) Step 2 at 51°C (124°F) Step 3 at 58°C (136°F) Step 4 at 65°C (149°F) (4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30° C (86°F) +45° C (113°F) +60° C (140°F) > 400 Minutes ASTM D5885 (HPOIT @ 150°C) Testing per GRI GM1 ASTM D-6992 (SIM) Deformation (4) ASTM D-6992 (SIM) Deformation (4) ISO 6721-1 ASTM E2254							
Resistance to UV Degradation (UV and Oxidation Resistance) (3) (3) Effective design life at least 60 years LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) Step 2 at 51°C (124°F) Step 3 at 58°C (136°F) Step 4 at 65°C (149°F) (4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30°C (86°F) +45°C (1113°F) +60°C (140°E) ASTM D-6992 (SIM) Deformation (4) STM D-6992 (SIM) Deformation (4) STM D-6992 (SIM) Deformation (4) STM D-6992 (SIM) Deformation (4) STM D-6992 (SIM) Deformation (4) STM D-6992 (SIM) Deformation (4) STM D-6992 (SIM) Deformation (4) STM D-6992 (SIM) Deformation (4) STM D-6992 (SIM) Deformation (4) STM D-6992 (SIM) STM D-6992 (SIM) Deformation (4) STM D-6992 (SIM)			tea on the sample are	a man the densest perjor disens.			
(UV and Oxidation Resistance) (3) ≥ 400 Minutes (HPOIT @ 150°C) Testing per GRI GM1 LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) ≤ 0.5 ASTM D-6992 Step 2 at 51°C (124°F) ≤ 0.6 % (SIM) Step 3 at 58°C (136°F) ≤ 0.9 Deformation (4) Step 4 at 65°C (149°F) ≤ 1.0 Deformation (4) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30° C (86°F) > 725 MPa ISO 6721-1 +45° C (1113°F) > 625 ASTM E2254		1 DORABIETT					
(3) Effective design life at least 60 years Testing per GRI GM1 LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) ≤ 0.5 % ASTM D-6992 Step 2 at 51°C (124°F) ≤ 0.6 % (SIM) Step 3 at 58°C (136°F) ≤ 0.9 Deformation (4) Step 4 at 65°C (149°F) ≤ 1.0 Elevated temperatures (4) At load of 4.4 kN/m) Flexural Storage Modulus at sample elevated temperature: +30° C (86°F) > 725 MPa +45° C (113°F) > 625 > 625 ASTM E2254	-						
LONG-TERM PLASTIC DEFORMATION (±10%) Measured Plastic Deformation by Accelerated Method Step 1 at 44°C (111°F) ≤0.5 % ASTM D-6992 Step 2 at 51°C (124°F) ≤0.6 % (SIM) Step 3 at 58°C (136°F) ≤0.9 Deformation (4) Step 4 at 65°C (149°F) ≤1.0 Deformation (4) (4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30° C (86°F) > 725 MPa +45° C (113°F) > 625 +60° C (140°F) > 475		≥ 400	Minutes				
Measured Plastic Deformation by Accelerated Method ASTM D-6992 Step 1 at 44°C (111°F) ≤ 0.5 % Step 2 at 51°C (124°F) ≤ 0.6 % Step 3 at 58°C (136°F) ≤ 0.9 Deformation Step 4 at 65°C (149°F) ≤ 1.0 (4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30° C (86°F) > 725 MPa +45° C (113°F) > 625 ASTM E2254	,			Testing per GRI GM13			
by Accelerated Method Step 1 at 44°C (111°F) Step 2 at 51°C (124°F) Step 3 at 58°C (136°F) Step 4 at 65°C (149°F) (4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30° C (86°F) +45° C (113°F) +60° C (140°F) ASTM D-6992 (SIM) Deformation (4) MPa ISO 6721-1 ASTM E2254		ATION (±10%)					
Step 1 at 44°C (111°F) ≤ 0.5 ASTM D-6992 Step 2 at 51°C (124°F) ≤ 0.6 % Step 3 at 58°C (136°F) ≤ 0.9 Deformation Step 4 at 65°C (149°F) ≤ 1.0 (4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30° C (86°F) > 725 MPa +45° C (113°F) > 625 +60° C (140°F) > 475							
Step 2 at 51°C (124°F) ≤0.6 % (SIM)	-	40-		∆STM D-6992			
Step 2 at 53°C (136°F) Step 3 at 58°C (136°F) Step 4 at 65°C (149°F) (4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30°C (86°F) +45°C (113°F) +60°C (140°F) MPa ISO 6721-1 ASTM E2254			%				
Step 4 at 65°C (149°F) Step 4 at 65°C (149°F) (4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30° C (86°F) +45° C (113°F) +60° C (140°F) MPa ISO 6721-1 ASTM E2254			*				
(4) At load of 4.4 kN/m) PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30° C (86°F)	· · · · · · · · · · · · · · · · · · ·		Belormation	l <i>=1</i>			
PERFORMANCE AT VARYING TEMPERATURES Flexural Storage Modulus at sample elevated temperature: +30° C (86°F) +45° C (113°F) +60° C (140°F) > 725 > 625 > 475		≤ 1.0					
Flexural Storage Modulus at sample elevated temperature: +30° C (86°F) +45° C (113°F) +60° C (140°F) > 725 > 625 ASTM E2254	(4) At load of 4.4 kN/m)						
at sample elevated temperature: +30° C (86°F) +45° C (113°F) +60° C (140°E) ASTM E2254	PERFORMANCE AT VARYING T	EMPERATURES					
+30° C (86°F)	Flexural Storage Modulus						
+45° C (113°F) > 625 +60° C (140°F) > 475	at sample elevated temperature:						
+45° C (113°F) > 625 +60° C (140°F) > 475	+30° C (86°F)	> 725	MPa	ISO 6721 1			
+60° C (1/10°E) > 475	+45° C (113°F)	> 625					
I I I I I I I I I I I I I I I I I I I	_ ·	> 475					
Brittle Temperature: ≤ Minus 70 (-94) °C (°F)	Brittle Temperature:	< Minus 70 (-94)	°C (°F)	(DIVIA)			
· = Willius / U (-34) C (F)	·	2 Willius 70 (-34)	C(F)				

PRS-NEOWEB™ - CATEGORY A GEOCELLS (Cellular Confinement System)

Data Sheet

PRODUC'	Γ PART NO.						
Example: PRS- Neoweb-445- 120-76-P-S-A							
			50- (2)				
		330- (13)	75- (3)	(1)	(2)	(3)	
		356- (14)	100 - (4)	up to	P-		
PRS-	Neoweb-	445 - (17.5)	120 - (4.7)	120-	Х-	S-	A
		660- (26)	150 - (6)				
		712 - (28)	200 - (8)				
		Weld Spacing Distance Mm (in)	Cell Height mm (in)	No. of Strips / Section	P-Perforated X-Non- perforated	Color S-Sand	Category

- (1) No. of Strips customized by project from 4 to 120 strips; different heights available upon special order
- (2) Perforations from ~6-22% of cell wall area of variable dimensions and shapes
- (3) Colors additional colors available upon request

CELL & SECTION NOMINAL DIMENSIONS

22.625.755		250001251011	250001251011	DECCRIPTION	D 500 D 10 T 10 T 1	250001251011	
PROPERTIES	NOMINAL	DESCRIPTION	DESCRIPTION	DESCRIPTION	DESCRIPTION	DESCRIPTION	
Distance between	±2.5%	330 mm	356 mm	445 mm	660 mm	712 mm	
Weld Seams	12.3%	(13 in)	(14 in)	(17.5 in)	(26 in)	(28 in)	
Cell Wall Heights	±5%	50, 75, 100, 120, 150, 200 mm					
cen wan ricigitis	23/0	(2, 3, 4, 4.7, 6, 8 in)					
Cell Dimension	±3%	245 x 210 mm	260 x 224 mm	340 x 290 mm	490 x 420 mm	520 x 448 mm	
(Optimal opening)		(9.65 x 8.27 in)	(10.24 x 8.82 in)	(13.39 x 11.42 in)	(19.29 x 16.53 in)	(20.40 x 17.64 in)	
No. of Cells/m ²	±3%	39	35	22	10	8	
		(32)	(27)	(18)	(8)	(6)	
Maximum Section Size (4)	±3%	2.5 x 12.6 m	2.7 x 13.4 m	2.8 x 17.4 m	2.5 x 25.2 m	2.8 x 27.0 m	
(Expanded)	max.	(8.20 x 38.71 ft)	(8.86 x 39.71 ft)	(9.19 x 51.81 ft)	(8.20 x 77.43 ft)	(9.19 x 79.40 ft)	
Maximum Section Area	120/	31.5 m²	36.3 m ²	48.0 m ²	63.0 m ²	75.3 m ²	
(Expanded)	±3%	(339.0 ft²)	(390.7 ft²)	(516.7 ft²)	(678.1 ft²)	(810.5 ft²)	

⁽⁴⁾ Section Sizes – different size sections available upon special order

SHIPPING DATA

The following data will be made available per order:

Neoweb Series + Configuration:	Section – Weight	Pallet :	Quantity (m ² /ft ²):
Height (mm/in)	 Weight per section (kg/lb) 	No. of Sections	Per 20' Container
No. of strips per section		 Area per pallet (m²/ft²) 	Per 40' Container
		Gross Weight (kg/lb)	

CERTIFICATIONS and ACCREDITATIONS

DESCRIPTION	ISSUED BY	CERTIFICATE NUMBER
Quality Management System Certification – ISO-9001:2008 for R&D, Manufacturing and Marketing	Ronet (ANAB accredited)	Q3600
Environmental Management System Certification – ISO-14001:2004	Ronet (ANAB accredited)	E3600
Occupational Health & Safety Management Certification – ISO-18000	Ronet (ANAB accredited)	O3600
EC Certificate for Factory Product Control	ITB, Building Research Institute, EU	1488-CPR-0099/Z
Accreditation of New Materials and Techniques	Indian Roads Congress	IRC-24(12)2009(ACC-30)
GOST R – Mark of Conformity - Russian Standards Institute	Federal Agency for Technical Regulation, Russia	0759575